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Motivation

I How do we model spatially-referenced, aggregated count data?
I How can we include popular epidemiological methodology

within this framework?
I How can we account for characteristics like zero inflation or

hierarchical structure?
I How can we provide tools to make this modeling framework

easily useable?



Generalized Linear Regression

I (Nelder and Wedderburn 1972) extended Gaussian linear
regression models to encompass all (one parameter)
exponential family dependent variables

I non-normal linear means modeled using a link function
I later extensions allowed for both fixed and random effects

(Gaussian) -(Raudenbush and Bryk 2002) develop Hierarchical
GLMs which can have non-Gaussian error distributions



GLM’s for Spatial Count Data

I necessarily associated with lattice data
I Early methodology arose as adaptations of methods for time

series of counts (for example Liang and Zeger 1986,S. L. Zeger
(1988)).

I (Albert and McShane 1995) develop a model for spatially
correlated binary count data (neuroimaging); (Gotway and
Stroup 1997) generalize these to cateogrical/discrete spatial
data

I Huge explosion since then, see (Anselin 2002), (Ward and
Gleditsch 2008) , and (De Oliveira 2012)



Flexibility of GLMs

GLMs allow for all sorts of dependent variables:

I Count Data models: Poisson, Binomial, Negative Binomial
I Zero-Inflated models
I Hurdle Models



GLM’s for Spatial Data- technical details

Consider the following data model and process model:

Z (si)|Y (si) ∼ ind .exponentialfamily(exp(Y (si)))
Y|β, τ2, φ ∼ N(Xβ, τ2(I− φH)−1)

I The conditional distribution of the data (Z ) given the process
(Y ) could be normal, poisson, binomial, etc.

I W is a spatial weight matrix
I β is the vector of regression coefficients
I τ is an overdispersion parameter
I φ is the spatial autocorrelation parameter



CAR models in the GLM context

If Z (si) follows a Gaussian distribution, where the si ’s form a lattice,
the CAR model can be written

Y (si)|Y (N(si)) ∼ N(Xβ, (I − ρW )−1M)

Where M is a diagonal matrix (e.g.
M = diag(|N(s1)|−1, . . . , |N(sn)|−1).



Specification of W

I For geostatistical data: W is specified by choosing an
appropriate covariance model via the empirical variogram

I For lattice data: W encodes conditional independence
structure (zeroes on diagonals and all entries (i , j) where si is
not a neighbor of sj)

I must be row-standardized
I can be binary, or weights
I How to choose neighborhood structure and their weights?



Popular neighborhood structures for lattices

I contiguity: two regions are neighbors if they share at least one
(queen) or more than one (rook) boundary point

I can lead to vastly differing numbers of neighbors for different
regions (e.g. larger regions will have more neighbors)

I k nearest neighbors: calculate the distances between two
regions as the distance between a single point in each

I e.g. geometric centroid, population-weighted centroid, or other
meaningful location



How important is the choice of neighborhood structure?

I Wall (2004) found counterintuitive implied correlations from
SAR/CAR models fit using various neighborhood schemes

I LeSage (2008) compare the log-likelihood values of models
using contiguity matrices and nearest neighbor matrices for
varying numbers of neighbors

I nearest neighbor performs better than contiguity. They
recommend comparing different values of k to assess sensitivity
of results to the number of neighbors.

I Underlying distance metric need not be Euclidean. (Shahid et
al. 2009) explore different distance metrics which capture road
distance



Hausdorff Distance

The Hausdorff distance measures the distance between two sets:

H(A,B) = max{h(A,B), h(B,A)}
= max{max

pa∈A
min
pb∈B

d(pa, pb),max
pb∈B

min
pa∈A

d(pa, pb)}

I The directional Hausdorff distance h(A,B) from a set A to a
set B is the largest possible distance between any point in A
and the closest point in B.

I The Hausdorff distance between A and B is then the larger of
two two directional Hausdorff distances.

I can use any underlying distance metric d



Two Ideas for Hausdorff Distance

1. use Hausdorff distance as a way to generate spatial weight
matrices for lattice data

2. use Hausdorff distance as a way to generate spatial covariates



Hausdorff distance for Spatial Weight Matrices

I K nearest neighbors using Hausdorff Distance instead of
centroid-based distance

I Inverse distance weighting using Hausdorff Distance



Hausdorff distance for spatial covariates

For example, use the hausdorff distance to generate “distance to”
type variables, e.g. the distance between a superneighborhood and
the closest highway (rather than centroid distance or closest
boundary point)



Hausdorff Distance for irregular geometries
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Extended Hausdorff Distance

I The extended Hausdorff distance (Min, Zhilin, and Xiaoyong
2007) allows for a characterization of the distribution of
distances between two objects.

H f1f2(X ,Y ) = max
{

kth
pa∈A min

pb∈B
{d(pa, pb)}, kth

pb∈B min
pa∈A
{d(pb, pa)}

}

I kth
x∈X f (x) is the kth q-quantile of f (x) over X

I f1 is the ratio k/q for the first term and f2 is the ratio for the
second term



Extended Hausdorff Distance – illustration
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Figure 1:



Extended Hausdorff- real example

Images/ext_haus_50.png

Figure 2: Median Hausdorff Distance from Texas

I notice how buffer width changes as width of target shape
changes

I Accounts for the fact that parts of Nebraska are closer to Texas
than parts of Arkansas



Calculating Extended Hausdorff distance: The ε buffer
method

The following is the ε buffer method suggested by Min, Zhilin, and
Xiaoyong (2007) to calculate extended Hausdorff distance

1. Generate NB points in/on B
2. Calculate the distance d(pb,B) for all the points
3. Rank the distances, the kth quantile will be the directional

extended Hausdorff distance from A to B.



ε buffer method visualized
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Implementation in R

# generate points
n = 10000
a.coords <- sp::spsample(A, n = n,type = "regular")

## points from A to B
dists <- rgeos::gDistance(a.coords, B, byid = T)
## find desired quantile of distances
eps <- quantile(dists[1,], f1)



Next Steps for Extended Hausdorff

I Write a function to calculate the extended Hausdorff distance
using any underlying distance metric

I will replace gDistance function in current code
I include option for user-defined distances
I Create an R package with extended Hausdorff capabilities for

Spatial objects in R (sp package)



Case-crossover

I (Maclure 1991) introduced the case-crossover design as a way
to assess the effect of a transient exposure on an accute
outcome

I Similar to case-control designs, but use subjects at previous
time points as controls
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Figure 3: Case-crossover v. Case-control (Maclure and Mittleman 2000)



Case-crossover model

The case-crossover design uses conditional logistic regression to fit
the following model:

λi(t,Xit) = λ0it exp(βXit) = λ0i exp(βXit + γit)

I individual, time-varying nuisance factors drop out of the model



Relative Risk model, continued

The case-crossover assumption is important in the estimation of the
probability that subject i fails at time t, given that t is in a
pre-specified reference window R

pit = P(Ti ,
NT∑

m=1
Yim = 1 = t|X ,R(t))

= λ0i exp(βXit + γit)∑
j∈R(t) λ0i exp(βXij + γij)



The case-crossover assumption
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Figure 4: The case-crossover assumption, visualized

pit = λ0i exp(βXit + γit)∑
j∈R(t) λ0i exp(βXij + γij)

= exp(βXit)∑
j∈R(t) exp(βXij)



Choice of Reference Window

Two popular choices

I Time-stratified: divides study period into pre-specified
reference windows

I leads to unbiased estimates
I has issues when trends are present in outcome variable
I partitions the study period– no overlap bias
I Symmetric bi-directional:
I leads to biased estimates
I does not partition the study period, leading to overlap bias
I adjustments exist (semi-symmetric bi-directional), but are

complicated to implement



Choice of Reference Window

M. A. Mittleman (2005) calls the choice of referent window design a
“settled" issue and recommends the time-stratified design. This
advice seems mostly heeded, though a large number of
case-crossover studies do not mention the particular referent window
scheme at all.
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Figure 5: Publications with “Case-Crossover" in Title, Keywords, or
Abstract, 1990-2017



Equivalence with Poisson Regression

Lu and Zeger (2007) generalize the equivalence of case-crossover
estimated using conditional logistic regression with Poisson
regression

I previously noted by Levy et al. (2001) and Janes, Sheppard,
and Lumley (2005)

I Time-stratified design: equivalent to Poisson regression with
dummy variables indicating the strata (prespecified reference
windows)

I Symmetric bi-directional: equivalent to using a weighted
running mean smoother to estimate the nuisance term in the
Poisson regression



Equivalence with Poisson Regression

Equivalence is demonstrated by showing the CLR and Poisson
regression estimating equations are the same (given a particular
reference window design)

Let Yit indicate whether subject i experiences the event of interest
at time t.

Then Yt =
∑

i Yit represents the number of events observed at time
t. The expected number of events at time t is given by:

µt =
∑

i
λi(t,Xt) =

∑
i
λ0i exp(βXt + γit) = exp(βXt + St),

where St =
∑

i λ0i exp(γit is the sum over all individual nuisance
factors.



A spatial case-crossover?

Why should we include a case-crossover component

I widespread use for common epidemiological questions
I encourage more wholistic approach– it’s not case crossover OR

glm, it can be both (they are equivalent)
I hasn’t been done spatially
I What would the case-crossover assumption look like in a spatial

model?
I An individual’s spatially varying nuisance factor in a given

region is the same as it is in neighboring regions (“close”
regions)



A spatial case-crossover?
I Motivated by equivalence with Poisson regression (a glm)
I The “spatial" relative risk model is:

λi(s,Xis) = λ0is exp(βXis) = λ0i exp(βXis + γis)

Does this make sense? It says the relative risk of subject i
experiencing the event in region s is a function of their risk of
experiencing the event in R(s), the set of reference regions for s.

I But you can’t be in more than one place at once
I This type of spatial dependence works in aggregate, but not at

the individual level
I When analyzing the impact of transient effects on acute

outcomes, time is a necessary component.
I How can we include a case-crossover component in a

spatiotemporal model?



Spatiotemporal Autoregressie Moving Average (STARMA)
Models

Consider a spatiotemporal process == (Zt(s1),Zt(s2), . . . ,Zt(sN))′
defined by

(t) =
p∑

k=0

λk∑
j=1

ξkjWkj(t − k)−
q∑

l=0

µl∑
j=1

φljVlj(t − l) + (t)

I p, λk are the temporal and spatial autoregressive lags
I q, µl are the temporal and spatial moving average parts lags
I λk is the order of the spatial lag in the
I ξkj and φlj are the AR and MA parameters to be estimated
I Wkj and Vlj are spatial weight matrices for AR time lag k and

space lag j and MA time lag l and spatial lag
I (t) are i.i.d. mean zero error terms
I note there are no exogenous variables



Regression Models with STARMA errors

Following Wells and SenGupta (2011), consider the following
regression model with STARMA errors:

= g(, β)+

=
p∑

k=0

λk∑
j=1

ξkjWkj t−k −
q∑

l=0

µl∑
j=1

φljVlj t−l+t

For simplicity, we will consider a single spatial weight matrix
W = Wkj = Vlj and set p = q = 1. The model simplifies to:

= β + ξ10t−1 + ξ11Wt−1 + φ10t−1 + φ11Wt−1+t



Indexing in Space

Rather than considering a collection of spatial processes indexed in
time, for the purposes of considering a case-crossover component we
will consider a collection of temporal processes indexed in space,
that is, == (Ys(t1),Ys(t2), . . . ,Ys(tT ))′. The the STARMA model
can be written:

= g(β+)

=
p∑

k=0

n∑
j=1

ξk1wsjB(k)
j −

q∑
l=0

n∑
j=1

φl1wsjB(l)
j +s

I B is the backwards shift operator
I Note that the model as written above assumes:
I the order of the spatial lag is 1 for both the autoregressive and

moving average parts



Indexing in Space

Assuming the order of the temporal lag is 1 for both parts, the
model simplifies to:

Ys(ti) = Xs(ti)β + ξ10Zs(ti−1) + ξ11

n∑
j=1

wsjZs(ti−1)

+ φ10εs(ti−1) + φ11

n∑
j=1

wsjεs(ti−1) + εs(ti)



Case-crossover in STARMA model context
I The case-crossover model corresponds to a STAR model (no

MA part)
I In the case crossover model, the risk of subject k experiencing

the event of interest in region s at time t is a function of the
risk at times in the reference window of their event time, R(t)

I Rather than using the temporal (unidirectional) backwards shift
operator B we will consider the temporal shift operator to be
omnidirectional

I The shift operator for a symmetric bi-directional design which
uses the time immediately prior and immediately after to
estimate the relative risk can be written as follows for 5 time
points:

BSBD =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1





STAR model with omnidirectional temporal shift operator

Letting g(·) ≡ exp(·)

= exp(β+)

= ξ01

n∑
j=1

wsjZj(t) + ξ10BSBD +s (t)

Written element-wise, this simplifies to:

Ys(ti) = exp(Xs(ti)β + Zs(ti))

Zs(ti) =
n∑

j=1
wsjZj(ti) + ξ10(Zs(ti−1) + Zs(ti) + Zs(ti+1)) + εs(ti)



Structure of Zs(t)
Following the construction for the temporal case crossover, let
Ys(ti) =

∑
k Ys(ti , k), where Ys(ti , k) is 1 if subject k experiences

the event in region s at time t. Suppose this probability is given by
the relative risk model:

λs(ti , k) = λ0sti k exp(Xs(ti)β) = λ0sk exp(Xs(ti)β + γs(ti , k))

It follows that the expected number of events in region s at time t
is the sum over the population of individuals:

µsti =
∑

k
λs(ti , k) =

∑
k
λ0sk exp(Xs(ti)β + γs(ti , k))

= exp(Xs(ti)β + Zs(ti))

Where exp(Zs(ti)) =
∑

k λ0sk exp(γs(ti , k))



STAR Case-crossover model

The case-crossover assumption is that γs(ti , k) = γs(t∗, k) for all
t∗ ∈ R(ti). - then we have that Zs(ti) = Zs(t∗) for all t∗ ∈ R(ti).

Applying this to the STAR model with SBD, we have:

Ys(ti) = exp(Xs(ti)β + Zs(ti))

Zs(ti) =
n∑

j=1
wsjZj(ti) + ξ10(Zs(ti−1) + Zs(ti) + Zs(ti+1)) + εs(ti)

=
n∑

j=1
wsjZj(ti) + ξ10(|R(ti)|Zs(ti)) + εs(ti)

The term |R(ti)| replaces BSBD. In fact, this will work independent
of referent window design.



Next steps for STAR case-crossover

I Remove the term |R(ti)| and allow ξ10 to scale the effect from
the case-crossover assumption

I Allow the term ξ10 to vary in space, that is, replace it with ξ10s .
I Explore the ability of this model to account for spatial

nonstationarity via differencing
I Estimation and prediction
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