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How can urban data be leveraged to help city

and community officials manage the impact of

pollution?
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Analysis at Actionable Levels

The geography and layout of a particular city affects how urban

data should be:

analyzed to account for geographic features such as

waterways or roadways

presented at a useful level such as well-known

neighborhoods or communities
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Motivating Application: Hurricane Harvey Health Outcomes

Data were collected via online surveys

about the impact of Hurricane Harvey,

including whether the respondent

experienced:

• Trouble concentrating or sleeping

• A runny nose, headache, shortness

of breath, or skin rash

• Flooding in their home

• Damage as a result of the storm

• Displacement as a result of the

storm

2/25



Modeling Spatial Data

Some issues to consider when modeling spatial data:

• Appropriate methods for type of spatial data (point level,

lattice, point pattern)

• Accounting for Spatial Dependence / Effective Sample Size

• Choice of distance metric

This talk focuses on the analysis of lattice data.
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Spatial Regression for Aggregated Data

Two popular forms of SAR (simultaneous autoregressive) models:

Spatial Errors y = Xβ + ε; ε = λW ε+ u

Spatial Lag y = ρWy + Xβ + v

Model region i as a function of all other regions, with weight wij

capturing spatial structure.

• If wij is not 0, regions i and j are ”neighbors”

• Neighbors should be “close” together
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Aggregated Modeling

Specify “closeness” by specifying neighbors of each region:

Contiguity

• First order: regions share at

least one boundary point

• Second order: regions who

are neighbors of first order

neighbors
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Aggregated Modeling

Specify “closeness” by specifying neighbors of each region:

K nearest neighbors

• Choose the k “closest”

regions

• “closest” is based on

centroid distances
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Issues with Contiguity & KNN

Contiguity

• Number of neighbors varies

by size of region

• Works best when lattice is

close to regular

• ignores holes or islands
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Issues with Contiguity & KNN

KNN

• Centroid: single point to
represent a set

• can lie in a ”remote” part

of region

• can lie outside the set if

region is non-convex

• How to choose k?
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Is there a simple way to generate a spatial

weight matrix among regions that respects

their geometry?
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Distance between sets

Hausdorff distance measures the distances between sets as “worst

case scenario” in terms of an underlying distance metric.

H(A,B) = max{h(A,B), h(B,A)}
= max{max

pa∈A
min
pb∈B

d(pa, pb), max
pb∈B

min
pa∈A

d(pa, pb)}

• Typically used in GIS applications or image recognition

• Has not been used to generate spatial weight matrices (until

now)
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Issues revisited

Using Hausdorff distance to define W

• Handles islands

• Avoids arbitrary centroid selection

• Retains flexibility of underlying distance metric

Doesn’t do well with irregular geometry...
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Hausdorff distance is sensitive to irregular geometry

Idea: instead of using the maximum distance, use another statistic?
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Extended Hausdorff Distance
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Extended Hausdorff Distance
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Constructing W with Extended Hausdorff Distance

Define the entries of W as:

• The inverse of the Hausdorff

distance; regions which are

closer to region i will have

larger weights in the i th row

of the weight matrix.

• KNN based on Hausdorff

distance; the k closest

regions to i will have

nonzero entries in W
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Comparing Hausdorff Distance to Median Hausdorff Distance
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Considerations for using Hausdorff matrices

Computation
(n
2

)
computations where n is number of

regions, but only needs to be done once per

lattice/distance metric/percent area

Implementation hausdorff R package in development; works

with existing spatial packages

Model How do various Hausdorff matrices affect

model performance?
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Simulations

Fitted the spatial errors and spatial lag model to data generated

while varying the following:

Underlying Model Spatial Error, Spatial Lag

Weight Matrix Contiguity and KNN(k = 4) using: Centroid,

Hausdorff, median Hausdorff

ρ/λ from 0 to 0.9 increments of 0.1

Lattice Houston Super-neighborhoods (n = 88),

Columbus neighborhoods (n=49),

random tessellations (n = 50)
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Findings

• Results for random tessellations are not necessarily applicable

to real-life lattices (tessellations are too “regular”)

• The “best” (in terms of parameter estimation) weight matrix

specification varies depending on the lattice
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Findings
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Hurricane Harvey Health Outcomes

Fit a spatial regression model using

various weight matrices using data

collected from the HHR:

• Dependent Variable: Responses

reporting trouble concentrating

• Independent Variables:

• Estimate of probability of E. coli

exposure

• Responses reporting their home

flooded

• Responses indicating they were

displaced
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Another Use for (Extended) Hausdorff Distance

Use (extended) Hausdorff distance to generate spatial covariates

for superneighborhoods, e.g. “distance to closest road” or

“distance to bayou”

21/25



Application

It’s clear that the statistical significance of the predictors in the model

does not depend on which weight matrix is used. All weight matrices

were able to account for the spatial dependence in the data.

Contiguity* Centroid Hausdorff Median Hausdorff

Estimate Std. Err P-value Estimate Std. Err P-value Estimate Std. Err P-value Estimate Std. Err P-value

Intercept 1.289 0.197 <0.001 1.326 0.200 <0.001 1.341 0.200 <0.001 1.354 0.198 <0.001

Log(Dist Bayou) 0.093 0.048 0.054 0.116 0.047 0.013 0.125 0.047 0.008 0.117 0.047 0.014

Log(E. coli) 2.471 0.406 <0.001 2.424 0.408 <0.001 2.451 0.412 <0.001 2.551 0.403 <0.001

Log(Damaged) 0.560 0.119 <0.001 0.555 0.122 <0.001 0.546 0.122 <0.001 0.539 0.123 <0.001

Log(Displaced) -0.018 0.083 0.827 -0.008 0.086 0.925 -0.001 0.085 0.993 -0.006 0.086 0.943

Lambda 0.300 0.145 0.093 0.267 0.170 0.214 0.290 0.171 0.162 0.196 0.176 0.323

Moran (residuals) 0.005 - 0.411 0.007 - 0.381 0.001 - 0.409 <0.001 - 0.419

AIC 29.076 - - 30.358 - - 29.942 - 30.922 - -

* n = 64; 2 regions were islands with no neighbors.

In this case, the contiguity model seems to provide the best fit going off

of AIC; the Hausdorff model is comparable and preferable in the sense

that no regions were deleted.
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Data Products

Extended Hausdorff weight matrices for a given lattice , underlying

distance metric, and percentage can be computed once and stored

on a data repository. For a given lattice, covariates based on

Extended Hausdorff can be stored as well.
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Future Directions

• Incorporate different distance metrics into hausdorff package

• Investigate selection of extended Hausdorff cutoff

• Evaluate performance of weight matrices via cross validation

• for lattices with varying irregularity
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Summary

• Exisiting methods for analysis of spatially aggregated data are

not equipped to handle realities of real data

• The Hausdorff distance and Extended Hausdorff distance can

handle these situations

• Computation can be lengthy, but only need to do it once

• (Extended) Hausdorff distance can accommodate any

underlying distance metric

Questions?

25/25


